nLab Segal type

Context

(,1)(\infty,1)-Category theory

Internal (,1)(\infty,1)-Categories

Directed homotopy type theory

Contents

 Idea

The analogue of a Segal space in simplicial type theory. A Segal type is a type AA such that every pair of composable morphisms to z:Az:A is uniquely composable.

Definition

Using morphisms

Definition

In simplicial type theory, a Segal type is a type AA such that given elements x:Ax:A, y:Ay:A, and z:Az:A and morphisms f:hom A(x,y)f:\mathrm{hom}_A(x, y) and g:hom A(y,z)g:\mathrm{hom}_A(y, z), the type

h:hom A(x,z) k:Δ 2A((k(0,0)=x)×(k(0,1)=y)×(k(1,1)=z)× (k (0,0),(0,1)=f)×(k (0,1),(1,1)=g)×(k (0,0),(1,1)=h))\sum_{h:\mathrm{hom}_A(x, z)} \sum_{k:\Delta^2 \to A} \left( \begin{array}{c} (k(0, 0) = x) \times (k(0, 1) = y) \times (k(1, 1) = z) \times \\ (k_{(0, 0), (0, 1)} = f) \times (k_{(0, 1), (1, 1)} = g) \times (k_{(0, 0), (1, 1)} = h) \end{array} \right)

is a contractible type, where Δ 2 (s,t):𝕀×𝕀st\Delta^2 \coloneqq \sum_{(s, t):\mathbb{I} \times \mathbb{I}} s \leq t is the 2-simplex type.

Definition

In simplicial type theory in the type theory with shapes formalism, a Segal type is a type AA such that given elements x:Ax:A, y:Ay:A, and z:Az:A and morphisms f:hom A(x,y)f:\mathrm{hom}_A(x, y) and g:hom A(y,z)g:\mathrm{hom}_A(y, z),

h:hom A(x,z)Δ 2A| [x,y,z,f,g,h] Δ 2\sum_{h:\mathrm{hom}_A(x, z)} \left\langle \Delta^2 \to A \vert_{[x, y, z, f, g, h]}^{\partial \Delta^2} \right\rangle

is a contractible type, where Δ 2\Delta^2 is the 22-simplex probe shape and Δ 2\partial \Delta^2 is its boundary.

Using functions from shapes

In simplicial type theory where the directed interval primitive 𝕀\mathbb{I} is defined via axioms, let the 2-simplex type be defined as

Δ 2 s:𝕀 t:𝕀st\Delta^2 \coloneqq \sum_{s:\mathbb{I}} \sum_{t:\mathbb{I}} s \leq t

and let the (2,1)-horn type be defined as

Λ 1 2 s:𝟚 t:𝟚(s= 𝕀0)(t= 𝕀1)\Lambda_1^2 \coloneqq \sum_{s:\mathbb{2}} \sum_{t:\mathbb{2}} (s =_\mathbb{I} 0) \vee (t =_\mathbb{I} 1)

where PQP \vee Q is the disjunction of the types PP and QQ. Since sts \leq t implies (s= 𝕀0)(t= 𝕀1)(s =_{\mathbb{I}} 0) \vee (t =_{\mathbb{I}} 1) for all s:𝕀s:\mathbb{I} and t:𝕀t:\mathbb{I}, we have a canonical function

(λt:𝕀.t,λt:𝕀.t,P):Δ 2Λ 1 2(\lambda t:\mathbb{I}.t, \lambda t:\mathbb{I}.t, P):\Delta^2 \to \Lambda^2_1

which is a tuple consisting of two copies of the identity function on 𝕀\mathbb{I} and a dependent function PP that takes the witness that sts \leq t to a witness that (s= 𝕀0)(t= 𝕀1)(s =_{\mathbb{I}} 0) \vee (t =_{\mathbb{I}} 1). By precomposition, this leads to a function

λu.u(λt:𝕀.t,λt:𝕀.t,P):(Δ 2A)(Λ 1 2A)\lambda u.u \circ (\lambda t:\mathbb{I}.t, \lambda t:\mathbb{I}.t, P):(\Delta^2 \to A) \to (\Lambda^2_1 \to A)

for all types AA.

Definition

AA is a Segal type if the above function is an equivalence of types.

isSegal(A)isEquiv(λu.u(λt:𝕀.t,λt:𝕀.t,P))\mathrm{isSegal}(A) \coloneqq \mathrm{isEquiv}(\lambda u.u \circ (\lambda t:\mathbb{I}.t, \lambda t:\mathbb{I}.t, P))

 Categorical semantics

The categorical semantics of a Segal type is a Segal space object in a locally cartesian closed ( , 1 ) (\infty,1) -category H\mathbf{H}.

References

Last revised on April 10, 2025 at 15:52:50. See the history of this page for a list of all contributions to it.